Sample Questions

	1.	If $S = \{a, b, c, d, e, f\}$ and A is a subset of S randomly chosen, then probability that A contains both a and b is							
		[a]	$\frac{1}{2}$	[b]	$\frac{1}{4}$	[c]	$\frac{1}{8}$	[d]	$\frac{7}{16}$
	2.	If $\log_x(y^3) = 4$ then $\log_y(x^3)$ is equal to							
		[a]	$\frac{9}{4}$	[b]	$\frac{3}{4}$	[c]	$\frac{1}{12}$	[d]	$\frac{4}{3}$
	3.	If $(\sqrt{2})$	$(\bar{3}+i)^{48} = a + ib$, where	$i = \sqrt{1}$	$\sqrt{-1}$, then				
		[a]	$a = 2^{48}$	[b]	$b \neq 0$	[c]	$a = 3^{24}$	[d]	$b = \frac{1}{3^{24}}$
	4.	If the	roots of the equation a	$x^{2} + $	$bx + c = 0$ are $\sin \frac{3\pi}{8}$ and	$l \cos$	$\frac{3\pi}{8}$ then the value of b^2 :	is	
		[a]	a(a+2c)	[b]	$\frac{-2(a+c)}{a}$	[c]	a(2a+c)	[d]	none of these
	5.	For a as,	positive number $a, x =$	$a + \frac{1}{a}$	$\frac{1}{a}, y = a + \frac{1}{a + \frac{1}{a}}$ and $z =$	= a +	$\frac{1}{a+\frac{1}{a+\frac{1}{a}}}$, then x, y, z and	e arra	anged in increasing sequence
		[a]	x,y,z	[b]	x, z, y	[c]	y, z, x	[d]	none of these
	6.	A dia of the	meter of a circle has its e ellipse is	two e	extreme points as the foo	ci of a	an ellipse. If the circle to	ouche	s the ellipse, the eccentricity
		[a]	$\frac{1}{2}$	[b]	$\frac{1}{\sqrt{2}}$	[c]	$\frac{1}{2\sqrt{2}}$	[d]	$\frac{1}{4}$
	7.	The o	lifterential equation $\frac{dy}{dx}$	$=\sqrt{y}$	$\bar{y}, \ y(0) = 0 \text{ has}$				
		[a]	exactly one solution	[b]	no solution	[c]	two differrent solu- tions	[d]	none of these
	8.	If $f(x)$	$c) = \alpha + \beta x - 1 + \gamma x x $, the	'n				
		[a]	f is differentiable for all x	[b]	f is differentiable at 0 only if $\gamma = 0$	[c]	f is differentiable at 1 only if $\beta = 0$	[d]	f is not differentiable at $x = 0$ and $x = 1$
	9.	The v	value of the integral $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}$	([tan	$[x] + [\sin x]) dx$ is				
		[a]	$\frac{\pi}{4}$	[b]	0	[c]	$\frac{2\pi}{3}$	[d]	none of these
1	0.	The triangle having vertices $2\vec{i} - \vec{j}, 3\vec{i} - 4\vec{j}$ and $\vec{i} - 3\vec{j}$ is							
		[a]	an obtuse angled tri- angle	[b]	an equilateral trian- gle	[c]	a right angled trian- gle	[d]	an acute angled but not an equilateral an- gle